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A Note on High/Low-Wave-Number Interactions in Spatially Discrete
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We describe an instability introduced by the spatial discretization of reaction-
diffusion equations. The mechanism is a nonlinear interaction between high and
low wave-number modes in the discrete equations. In partial differential
equations which exhibit strong temporal growth, a parasitic high-wave-number
mode is stimulated, through aliasing, by a physically meaningful low-wave-
number mode. We analyse the interaction using phase-plane techniques and
present complementary numerical results.

1. Introduction

IN THIS note we analyse nonlinear instabilities caused by spatial discretizations of
reaction-diffusion equations of the form

I. (P)

for x e (0,1), together with either periodic or Neumann boundary conditions. In
particular we shall focus on the case in which

f(u) = a + bu + cu2 + eu\

for real a, b, c, e. We discuss the form of initial conditions later.
We introduce a spatial mesh by the points xt=jAx for ; = 0, . . . , / , where

JAx = 1. We denote our approximation to u(xjt t) by Uj(t). Using the standard
three-point approximation to u^, we obtain the system of ordinary differential
equations

^ = f4+/W) (PD)
for j = 0, . . . , / , together with appropriate discretizations of the boundary
conditions which determine (/_,(() and UJ+l(t). Here d\Uj = Uj+l -2U/+ Uj-i.

The problem of nonlinear instability in numerical approximations of partial
differential equations is the subject of a great deal of current research. Much of
the explicit analysis focuses on non-dissipative discretizations of hyperbolic
problems (particularly the inviscid Burgers' equation) and is motivated by the
important papers [7,16]. More recent references include [2,3,18,20]. Such
problems can exhibit violent instabilities caused by the nonlinear self-interaction
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28 ANDREW STUART

of a high-wave-number mode. Since neither the underlying partial differential
equation nor its discretization possess an inherent damping mechanism, these
instabilities are particularly severe. Milder instabilities caused by a weak
resonance between high- and low-wave-number modes have been identified by
Moore [14] in equations modelling water waves; recent work [3] suggests a
relationship between Moore's mechanism and the behaviour of leap-frog dis-
cretizations of Burgers' equation.

The study of nonlinear instability in the discretization of dissipative partial
differential equations has received less attention since the damping mechanism in
the underlying equation tends to counteract instabilities (see [6] for an analysis of
the viscous Burgers' equation which is relevant for small viscosities or large-
amplitude initial data). However, there is a well-known linear instability
mechanism in discrete parabolic equations [17] which arises when the Courant
number At/At2 exceeds \; ten years ago Newell [15] showed how nonlinear
effects could be incorporated into this mechanism, by employing a discrete
multiple-scales analysis along the lines of the weakly nonlinear theories of
hydrodynamic stability [5,12]. The linear instability mechanism is associated with
the growth of a high-wave-number mode, and the nonlinear effects can either
exacerbate the instability or balance it to produce spurious time-oscillatory
behaviour or more complicated bounded dynamics [13,15,19]. Recent work by
the author [19], based on the ideas of Newell [15], describes a related instability
arising in discretizations of reaction-diffusion equations in which the reaction term
can act as a source of energy to a low-wave-number mode. The instability is
caused by an interaction between the physically meaningful low-wave-number
mode and a spurious (poorly resolved) high-wave-number mode.

However, whilst the work in [19] applies to a very broad class of nonlinearities
f{u), it is limited in a fundamental way: the analysis is based on local bifurcation
theory and requires that two parameters be close to their critical values. None the
less, the work suggests that high/low-wave-number interactions are important in
discrete parabolic equations and it is the purpose of this paper to demonstrate
that the interactions arise in a global fashion, without parameter restrictions, in a
wide class of equations which exhibit finite-time singularities. The instability
considered here is entirely nonlinear in character and is not a modification of
linear theories. Furthermore, whilst the instability described in [19] is caused by
time discretization, this note is concerned purely with instabilities introduced by
spatial discretization. Typical examples of nonlinearly unstable computations are
shown in Figs 3 to 5 where a spurious mode with spatial period 3Ax is generated.

In section 2 we show that the semidiscrete problem (PD) admits closed-form
solutions comprising only three spatial modes. For appropriate initial conditions
this enables us to reduce (PD) to a low-dimensional system of coupled ordinary
differential equations. In section 3 we discuss the behaviour of this system by
phase-plane analysis. Section 4 contains a brief analysis of (P) for comparison
with (PD). We present numerical experiments with (PD), which indicate the
relevance of our analysis, in section 5. In section 6 we make some concluding
remarks.
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SPATIALLY DISCRETE PARABOLIC EQUATIONS 29

2. 3-mode solutions of (PD)

In this section we show that (PD) admits closed solutions of the form

Uj(t) =A(t) exp (2ni>73) + A*{t) exp (-2ra//3) + B{t), (2.1)

where * denotes complex conjugation. This solution comprises a 3 Ac-periodic
mode superimposed on a spatially uniform one. For the moment we ignore the
boundary conditions on the problem. The solution (2.1) is admitted as a result of
the property of aliasing, namely that on a discrete grid large classes of periodic
functions are indistinguishable from one another. In particular, we use the
following relations, where equality holds for integer ; (that is, equality denotes
'indistinguishable when sampled on the discrete grid'):

exp ( -4JU/73) = exp (2JI///3); exp (4n///3) = exp ( - 2 JU/ /3 ) ; exp (±2nij) = 1.

(2.2)

Using equations (2.1), (2.2) we can establish the following relationships:

U3 = B3 + A3 + A*3 + 3[A2A* + A*2B + AB2] exp (2ni>73)

+ 3[AA*2 + A2B+A*B2]exp(-2nij/3) (2.3)

and

Uj = B2 + 2AA* + [A*2 + TAB] exp (2JU//3) + [A2 + 2A*B] exp ( -2JU/73) . (2.4)

Straightforward trigonometric identities demonstrate that

<5*[exp (2JU//3)] = - 3 exp (2ro//3) and <5*[exp (-2jiiy/3)] = - 3 exp (-2nij/3).
(2.5)

Substituting (2.1) and (2.3) to (2.5) into (PD) and equating the coefficients of
the three distinct modes (which can be justified by discrete orthogonality
conditions), we obtain a third-order dynamical system (assuming that B(t) is real)
defined by

( ^ ^ " 3)A lA*2 2AB\ 3e[A2A* + A*2B + AB2], (2.6)

— = a + bB + c[B2 + 2AA*] + e[B3 + A3 + A*3]. (2.7)

In the original partial differential equation one would expect the nonlinearity to
produce a cascade of energy to smaller and smaller scales. However, the aliasing
prevents this and permits the closed form of solution (2.1). The feedback
mechanism caused by aliasing was first identified by Phillips in a discretization of
the barotropic vorticity equation [16].

We now discuss boundary conditions. We assume that J is a multiple of 3. Then
(2.1) satisfies (PD) together with the discrete periodicity conditions

t/_,(O = f/y-i(O and f/,+I(r) = t/i(0- (2-8)
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3 0 ANDREW STUART

If we specify the discrete homogeneous Neumann boundary conditions

t/1(O=t/_1(O and UJ+l{i) = Uj-l(f), (2.9)

then (2.1) satisfies (PD) and (2.9) provided that A(i) is real. In this case the
third-order dynamical system reduces to a pair of ordinary differential equations.
We shall concentrate on this case in the following section.

If (P) is solved subject to periodic or homogeneous Neumann boundary
conditions, together with spatially uniform initial data, then the solution u(x, t)
remains constant in space for all time and satisfies the ordinary differential
equation

-^• = a + bu + cu2 + eu3. (2.10)

Equations (2.6), (2.7) represent the solution of (PD) subject to the same initial
condition; thus the equation (2.7) for B(t) is the spatially discrete version of
(2.10). The evolution of the pair {A{t), B{i)), representing the high- and
low-wave-number modes respectively, is crucial to determining the validity of
approximating (P) by (PD). Of particular interest is how small initial values of
A{t) (representing rounding or truncation errors) evolve in time.

3. Phase-plane analysis

In this section we analyse equations (2.6), (2.7) with A{t) real, in the phase
plane; these equations represent the solution of (PD) subject to the discrete
Neumann conditions (2.9). The inhibiting effect of dissipation on the instability
mechanism can be clearly seen from the O(Ax~2) damping term on the right-hand
side of equation (2.6). The question of interest is whether strong growth in the
physical mode B(i) can stimulate growth in the spurious mode A{i) by nonlinear
interaction, thus overcoming the effect of dissipation. Consequently we shall
concentrate on parameter values for a, b, c, e which ensure rapid growth of the
physical mode. Such growth is determined by the highest-order nonlinearity and
so we shall concentrate on the cases when a = b = c = 0, e > 0; and a = b = e = 0,
c > 0. These cases isolate the two dominant nonlinear effects. In section 5 we
present numerical results for more general sets of parameter values which justify
the claim that cases (i) and (ii) define the dominant behaviour in (PD).

Case(i): a = b=c = 0;e>0

From equation (2.10) we deduce that u(x, t), the solution of (P), satisfies

Un

u ^ t ) ( 3 1 )

where u^ denotes the spatially uniform initial value. Thus u(x, t) remains spatially
uniform and becomes unbounded at finite time tc = l/2eu£. We compare this
behaviour with that of (PD) defined by (2.1), (2.6), (2.7) with A(t) real.
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SPATIALLY DISCRETE PARABOLIC EQUATIONS 31

In this case equations (2.6), (2.7) reduce to

d<4
— B2)-l/Ax2], (3.2)

(3.3)

The critical points of this system are given by (0,0) and (±p, T2ip), where

The origin represents the trivial stationary solution of (P) whilst the outer critical
points are spurious equilibria generated by the spatial discretization. The origin is
nonlinearly unstable and the two outer equilibria are spiral repellers.

Figure 1 shows the phase diagram for equations (3.2), (3.3). (The diagram can
be extended to negative A(t) by noting that (3.2), (3.3) are invariant under
A—* —A and B—*—B.) Notice the trajectories along the fl-axis, which represent
the true solution subject to spatially uniform initial conditions. All other
trajectories, however, lead eventually to growth in the spurious mode A{t) so that
it becomes of the same order as B(t). Analysis of (3.2), (3.3) shows that, for large
A(t), B{t) = qA{t), where q satisfies 2q3 + 3q2 + 3q = 2. This cubic has a single
real solution, namely q =0.429445.

15 20 25 30 35 40 45 50

- 4 0

- 5 0

FIG. 1. Phase diagram for equations (3.2), (3.3) and the critical ellipse (3.4). Ax = ^ and e = 1
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32 ANDREW STUART

Typically we can expect rounding and truncation errors to introduce small
perturbations to the spatially uniform system. These perturbations will contain a
component of the spurious 3 Ax -periodic spatial mode. We can analyse the effect
of such small errors by considering trajectories which start close to the B-axis.
For simplicity let us consider initial data in the first quadrant. It is clear from
equation (3.2) that A{t) is a decreasing function of time until the ellipse

B2) = Ax~2 (3.4)

is traversed—see Fig. 1. This occurs for B(t) = O{Ax~l). Since B{t) approximates
u(t) accurately until this time (since A{t) is small), we are justified in deducing
that the growth of A(t) becomes significant for t — tc = O(Ax2), assuming that
B(0) = 0(1). This follows from (3.1) with u(x, t) = O^Ax'1).

This is a small time region. However, the spatial structure of finite time
singularities in partial differential equations is a subject of much current interest
[4, 8,10,11] and this analysis serves as a warning that, close to the blow-up time,
even time-exact numerical methods are prone to spurious behaviour caused
purely by the spatial discretization. An indication of the extreme care required to
compute successfully close to the blow-up time can be found in [1].

Casein): a = b = e = 0;c>0

From equation (2.10) we deduce that u(x, t), the solution of (P), satisfies

Thus u(x, t) becomes unbounded in finite time tc = l/cu0, if u o > 0.
Equations (2.6), (2.7), governing the evolution of A{t) and Bit), reduce to

d/1
— = A[cA + 2cB-3/Ax% (3.6)

^ = c[B2 + Z42]. (3.7)

The origin is the only equilibrium point and is nonlinearly unstable; thus the
phase diagram is uninteresting. Again the solution along the B-axis represents the
true spatially uniform solution. As in case (i), A{t) eventually grows to become of
the same magnitude as B(t), and equations (3.6), (3.7) indicate that B(t)>=A(t)
or -2/1 (r), for A(t)» 1.

Confining our attention to the first quadrant we see from (3.6) that, after small
initializations, the growth of A(t) becomes significant for B{t) = O(Ax~2), when
dA/dt changes sign. Since B(t) approximates u(t) adequately until this time, we
deduce from equation (3.5) that the growth of A(t) is again significant for
t-tc = O(Ax2), at which point fl(f) = u{x, t) = O(Ax~2). Thus the results of both
cases (i) and (ii) lead to the same conclusion about the time-scales on which the
nonlinear instability is significant.
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SPATIALLY DISCRETE PARABOLIC EQUATIONS 33

4. linear stability analysis for (P)

In this section we analyse the stability of spatially uniform solutions of (P)
under small perturbations. We show that the spatially uniform solutions are
unstable but that the character of the instability differs entirely from that in (PD)
described in section 3—it is initially a linear phenomenon, dominated by
low-wave-number activity.

For simplicity we consider case (i) for which the spatially uniform solution is
given by equation (3.1). We also take homogeneous Neumann boundary
conditions. If we linearize (P) about this solution, then the small perturbation
v{x, t) satisfies the equation

subject to the boundary conditions

vx(0,t) = vx(l,t) = 0. (4.2)

These equations (4.1), (4.2) can be solved by separation of variables to give

- i fef l . (4.3)

Clearly all the modes in this solution eventually grow in time, since each one
becomes unbounded as t approaches tc. Since the growth of v{x, i) is more rapid
than the growth of the spatially uniform solution (3.1) it is reasonable to deem
the spatially uniform solution unstable. However, the instability is not appreci-
able until t is close to tc. In fact, a given mode cos {knx) becomes comparable to
the spatially uniform solution (3.1) for t = tc — xk, where xk = O(exp(—k2x1tc)).
Thus, whilst all modes grow eventually in time, the low-wave-number modes
dominate the process and nonlinear effects come into effect before the high wave
numbers are excited by purely linear effects. Thus we expect the initial evolution
of instabilities in the partial differential equation to be governed by growth of
low-wave-number modes.

5. Numerical results

Here we present some numerical results which confirm the validity of the
analysis in sections 3 and 4. The computations were done on equations (PD)
subject to the boundary conditions (2.9). We emphasize that the instabilities we
have described are purely a product of the spatial discretization and so we choose
a numerical time-integration routine with the purpose of minimizing the temporal
discretization error. In this way we avoid the problem of instability caused by
temporal discretization, which is not the subject of this note. (A preliminary
study of the effect of temporal discretization could be initiated by studying the
recurrence relations resulting from discretization of the ordinary differential
equations (2.6), (2.7).)
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34 ANDREW STUART

The equations (PD) were solved by the forward Euler method with the time
step At chosen at each time level to satisfy

At = Ax2/(Cu^). (5.1)

Here umax is the maximum over / of the approximations to the functions Uj(t) at
that time level, and r is the degree of the polynomial f(u). This choice of time
step is made for two reasons.

(i) The scaling AfxAx2 in (5.1) follows from linearized numerical stability
theory for Euler's method in the neighbourhood of some representative constant
solution of O(l) with respect to the mesh-spacings. In this case, which is relevant
to the initial evolution of the problem from O(l) data, the stability requirements
are determined purely by the parabolic heat operator and lower-order terms in
the differential equation can be ignored [17].

(ii) As the solution becomes large, the linearized criterion given above, which
relies on the balance between spatial and temporal derivatives in (P), ceases to be
relevant; the important balance becomes that between the time derivative and the
nonlinear source term. Considering these terms alone, scaling shows that O(l)
relative changes in the magnitude of the solution occur on a time scale of
O(u]^), when «„„ is large. Thus we choose the time step in (5.1) to reflect this
time scale. Such a scaling is employed by Hocking et al. [9] in a case with r = 3,
but with different boundary conditions.
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FIG. 2. Solutions of (PD), with J = 12 and / (« ) = 10u. Profiles at intervals of 25A/
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SPATIALLY DISCRETE PARABOLIC EQUATIONS 35

We claim that for these two reasons our choice of time step (5.1) for Euler's
method is the maximum possible choice consistent with the aim of eliminating
temporal discretization errors. The final validation of this claim comes from the
agreement between the theory and numerical experiments.

With an explicit method a spatially uniform initial distribution remains uniform
at all time steps. Thus to simulate the effect of rounding and truncation error,
which would destroy the spatial uniformity of solutions if an implicit time-
stepping algorithm was used, we use initial data which is a small perturbation of a
constant value. In Fig. 2 the constant C in (5.1) is 4 and in Figs 3 to 8 it is 6-94. In
Fig. 2 the times at which the solutions are graphed are printed next to each
profile. In Figs 3 to 8 the time given is the blow-up time for the numerical
method; since the interesting behaviour is compressed into a time region within
O(Ax2) of the blow-up time, it is not necessary to label each profile individually.

In Figs 2, 3 and 4 we use the initial conditions Uj(0) = 1 + 10~5 cos (2n//3). The
profiles are graphed at intervals of 25 time steps. Figure 2 shows the case when
/(u) = lOu. There is no nonlinear interaction in this case and the solution
develops in a spatially uniform fashion, after the initial non-uniformities are
damped out. Notice that the solution evolves exponentially in time, in agreement
with the spatially uniform solution u(x, t) = el0>—the relative error in the last
profile is about five per cent.

Figure 3 shows results in the case f(u) = 5u3 and Ax = -fe. The data for Fig. 4

2000

1800

1600

1400

.-. 1200

3 1000

800

600

400

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3. Solutions of (PD), with J = 12 and f(u) = 5u3. Profiles at intervals of 25A/
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36 ANDREW STUART

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 4. Solutions of (PD), with 7 = 12 and /(u) = lOu2. Profiles at intervals of 25A«

are the same as for Fig. 3, except for the nonlinearity which is of the form
f(u) = 10u2. The growth of the parasitic wave with period 3Ax is clear, and is in
accordance with the analysis in section 3. The data for Fig. 5 are identical to those
used in Fig. 3 except that the nonlinearity is now f(u) = 5(u3 - w2) and
U,(0) = 2 + 10"5 cos (2n//3). In this case the phase plane for the 3-mode solution
is a modification of that shown in Fig. 1 to allow for two additional (unstable)
fixed points (A(t), B(t)) = (0, ±1). The numerical results indicate that the
qualitative results about the behaviour near to the blow-up time t = tc are
preserved under modifications of the lower-order terms in the cubic f{u).

For Fig. 6 we changed the initial data to U,(0) = 1 0 -I- 1(T5 cos (nj/J). This
corresponds to a small spatially non-uniform perturbation proportional to the
most unstable mode in the partial differential equation (P), according to the
linear theory in section 4. Otherwise the data are identical to those used for Fig.
3. The results show a focusing near to x = 0, caused by the slight perturbation to
the initial conditions; this behaviour reflects a genuine property of the partial
differential equation.

In Fig. 7 we used the same conditions as for Fig. 3 except that

(/y(0) = 1 + 10"5 cos (JI/72).

The solution evolves into a spatial structure with period 4Ax; this suggests the
existence of closed solutions similar to (2.1) but with a longer period. In Fig. 8 we
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SPATIALLY DISCRETE PARABOLIC EQUATIONS

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 5. Solutions of (PD), with J = 12 and/(n) = 5(u3 - u2). Profiles at intervals of 25A/
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FIG. 6. Solutions of (P) with f(u) = 5n\ Profiles at intervals of 25A/
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FIG. 7. Solutions of (PD), with J = 12 and f(u) = 5u\ Profiles at intervals of 25At
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FIG. 8. Solutions of (PD), with 7 = 12 and f(u) = 5w\ Profiles at intervals of 25A/
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SPATIALLY DISCRETE PARABOLIC EQUATIONS m
took a combination of the initial conditions for Figs 3 and 7, namely

£7,(0) = 1 + }l(T5(cos (2n/73) + cos (JI/ /2)).

These data evolve into a spatial structure with period 12Ax; that is, the whole
unit interval in x. This is the period which is the lowest common multiple of the
periods of the two modes in the initial data. The results suggest that closed-form
solutions are possible which represent the interaction of spurious 3Ax- and
4 Ax-periodic modes with themselves and with the fundamental uniform mode.

The results shown in Figs 7 and 8 indicate that the three-mode solutions
presented in section 3 do not represent the full range of nonlinear instabilities in
(PD). A generalization of the analysis in section 2 shows that other closed forms,
which could account for the phenomena in Figs 7 and 8, are indeed admitted by
(PD). However, the resulting dynamical systems are of higher order than (2.6),
(2.7) and more difficult to analyse. The simple equations we have studied in
section 3 provide insight into the nature of the instabilities introduced by spatial
discretization, abasing, and nonlinear interaction without requiring complicated
analysis.

Finally we discuss briefly the stability of the three-mode solution (2.1) as a
solution of (PD). It is often the case that simple solutions such as (2.1) are
themselves unstable to perturbations amongst other spatial modes (see [2, 3,18]
for discussion of this phenomenon in relation to discretizations of the inviscid

3.5

0.6 0.7 0.8 0.9 1

FIG. 9, As for Fig. 3 with twice as many time steps
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FIG. 10. Spectrum of the solution of (PD). J = 12

Burgers' equation). This is the case here if solutions are integrated over a
sufficiently large number of time steps. If (PD) is solved with identical data as for
Fig. 3, but integrated for twice the number of time steps, then the solution
develops pronounced spikes; see Fig. 9. Such spikes are characteristic of a
solution in which all spatial modes are excited. This is confirmed in Fig. 10 which
shows how much energy is in each mode exp (2mA://). Notice that the modes
k = 0 and k = ±4 are dominant, as we would expect from (2.1), but that energy
has also leaked into all the remaining modes.

6. Conclusions

We have described an instability mechanism which arises in spatial
discretizations of semilinear parabolic partial differential equations. The in-
stability is manifest in problems which exhibit finite-time singularities, and it acts
by destroying the spatial structure of the true solution close to the blow-up time.
As the discussion of Figs 7 to 10 (in section 5) shows, the analysis of the simple
solutions (2.1) does not cover all possible instabilities in (PD)—other modes can
be stimulated by the initial data or by leakage of energy from the solution (2.1) to
other spatial modes. However, the initial stages of the instability can be
characterized generically by a direct transfer of energy from the physically
meaningful low-wave-number modes to the spurious high-wave-number modes.
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SPATIALLY DISCRETE PARABOLIC EQUATIONS 41

Our analysis is restricted to partial differential equations which admit spatially
uniform solutions. However, it is likely that similar behaviour occurs in more
general problems which admit singular solutions. The analysis of such problems is
much more complicated and we believe that the concrete example constructed is
valuable as a warning of some of the difficulties arising in the computation of
singular solutions.

The work is also of independent interest since the conclusions are similar to
those in [19], namely that high/low-wave-number interactions are crucial to the
evolution of nonlinear instabilities in discrete parabolic equations. The assump-
tions and restrictions in [19] are quite different from those made here and so the
two studies are complementary.
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