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Synopsis
We present a generalisation of the continuous Gronwall inequality and show its use in bounding
solutions of discrete inequalities of a form that arise when analysing the convergence of product
integration methods for Volterra integral equations. We then use these ideas to prove convergence of

a numerical method which is effective in approximating Volterra integral equations of the second kind
with weakly singular kernels.

1. Introduction

This paper is concerned with the application of numerical methods to find
approximations to the solutions of Volterra integral equations of the form

YO =50+ [ H s, p))de. (L1)

In particular, we are interested in the use of variable mesh methods which arise
when transformations of the dependent variable are made to eliminate sin-
gularities inherent in the solution of certain equations of the form (1.1).

Consider, for example, a mesh which has a step size of O(k) throughout most
of the interval [0, 7], but which involves points with the larger step size of O(h?)
over a (smaller) part of the interval. A naive analysis of the consistency and
convergence of schemes on such graded meshes, based on the assumption that the
mesh spacing is uniformly bounded above by O(hk), leads to weak results which
do not reflect the true order of consistency of the scheme and may not even yield
a convergence result at all. Sharper results can often be obtained by the use of
more sophisticated analysis of the discrete inequalities which determine the error
in the numerical scheme at each mesh point (see [8], [5]).

We describe a new numerical method for weakly singular Volterra integral
equations which is based on the introduction of a variable mesh. The method is

easy to apply and the analysis of its convergence is made possible by use of a new
Gronwall inequality.
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In Section 2 we present a generalisation of the continuous Gronwall inequality
of Bellman [2] and show how this may be used to derive general criteria for
bounding the errors arising in a numerical scheme for equation (1.1).

In Section 3 we consider singular linear Volterra equations of the form

t

yo=g0+ [ 2 as (12)

o (1 —5)
Developing an idea introduced by Norbury in [10], we present a numerical
method which involves the transformation of the independent variables, followed
by an application of the product trapezium rule. Then we use the criteria of
Section 2 to prove convergence of the scheme. We find it to be of O(h%”), for
arbitrary £ >0, a significant improvement on the direct application of the
trapezium rule to equation (1.3), which results in O(h?) convergence [4]. In
addition, the method compares favourably with the O(h*) non-polynomial spline
collocation methods proposed by Brunner [3] in that, although its order of
convergence is less, our method is easier to implement in practice.

In analysing only linear equations, we have adopted the view taken in Brunner
[4] that any convergence proof for non-linear equations will always involve a
linearisation step, and subsequently the structure of the analysis will remain
unchanged. In Part II of this paper [11] we will consider a particular class of
singular non-linear Volterra equations for which the transformation methods
discussed in Section 3 are applicable. The non-linear behaviour, although not
critical to the convergence results, is crucial in determining the range of existence
and the global stability of the solution.

2. A continuous Gronwall inequality and discrete error equations

The following theorem provides a generalisation of the Gronwall inequality of
Bellman [2].

THEOREM 2.1 (A new Gronwall inequality). If the functions u(y) and b(., y)
are non-negative and integrable over y€|0, T| and if in addition a=0,

ob
i (., y)=0and b(y, y) exists, then
i f

iy fo “b(E, Ou(E) dE @.1)
implies that
) = e UO b(E, 1) d,;:].
Proof. Let

x0=[ b(E, Du(E) dE. 2.2)
Then

X0 = b6, u()+ [ by (&, u(E) dE
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and so, by equations (2.1) and (2.2)
X'(s)=b(s, s)[a+ X(s)] + Ls b,(&, s)u(§) d&. 2.3)

Now, defining

/] =d-% [exp {—J:b(&, s) dg}X(s)]

we have

F g {—fo b(E, 5) dg}[x'(s) = (b(s, 5)+ L by(, s) d§>X(s)].

Applying inequality (2.3) gives us
I<exp {—fo b(E, 5) d&}[b(s, S)a+ L by (& 5)u(®) d |
~exp{- fo "B(E, ) dg}[ jo " By(E 6) & |x(s).
Replacing X(s) by X(s) +a —a in the last term, we observe that
i { - fo BE 5) di;‘}[ab(; $+a fo b (& 5) dg]
—ew{- [ bE 9 a][[ bE G +a-u@1dE] @

ob
But, since 0= & =s and e (-, y) =0, we have
y

E

w(E)Sa+ f b(n, Eve(n) dn
&

<a+ j b(n, s)u(n) dn

=a+ J: b(n, s)u(n) dn

=a + X(s).
Hence

[ 5.(& X6 +a-u(@] a5 0
Thus, by inequality (2.4)

I=exp { = LS b(§, s) d§}[ab(s, s)+a J: b,(&, s) d&].
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Integrating this expression, with respect to s, between 0 and ¢ gives
t r
exp { = f b(E, 1) dE}X(t) —X0)=a [1 —leXp { = f b(§, 1) d&}],
0 0
Finally, since X(0) =0, we obtain

X(r) éa[exp {j b(g 1) d&} = 1]
0
and so, by inequality (2.1), we have

e { fo bE, 1) dig},

which is the required result. [J

We now use this theorem to derive bounds on the errors arising in numerical
methods for Volterra integral equations. Consider the true solution of an integral
equation of the form (1.1), y(#), and the numerical approximation to this
solution, y,, We define the approximation error, & by & = (y; —y(t)). The
analysis of product integration type methods frequently leads to an inequality for
the approximation errors ¢; of the form

&=8+h D dgg,. (2.5)
j=1

Here k is some measure of the magnitude of the step-size and § is the consistency
error which will typically be in the form of 4 raised to some power. In the case
where uniform mesh-spacing is used on non-singular equations, the d;’s will be
uniformly bounded above independently of i and application of the standard
discrete Gronwall inequality will yield the result that

l&:| = C6, (2.6)

where C is independent of A. However, when graded meshes are used or when
product integration techniques are applied directly to equations with weakly
singular kernels, the case arises where the discrete kernel d;; is not uniformly
bounded above independently of /. In these cases more sophisticated analysis is
required to yield results of the form (2.6). Using the ideas of iterated kernels
from integral equation theory, Dixon and McKee [5] have derived a set of
conditions on the discrete kernel d; which enable a result of the form (2.6) to be
deduced from inequality (2.5). Essentially the idea behind the derivation of their
conditions is to iterate the discrete kernels until they are uniformly bounded
above independently of 4 and then to apply the standard discrete Gronwall
lemma. We now present a set of conditions on the discrete kernel which do not
require iteration until uniform boundedness is obtained with respect to 4. We
show in Section 3 how these conditions may be used in practice when proving
convergence of a particular numerical scheme.
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We define the u™ iterated kernel of d;;, denoted d$”, by

|d;|
d =—" 2.7
- hd] @7
and
i=1
dfP=h 3, dPd% for p=2. (2.8)
f=j+1
We employ the function ), satisfying
d$) = f®(h(j +1), hi), (2.9)
and define g by
g=nh 2 d§p. (2.10)

THEOREM 2.2. Let the kernel d;; in the inequality (2.5), its iterates defined by
(2.7, 8) and the function f*™ defined by inequality (2.9) satisfy the following
conditions:

6))] hd,ﬁél
(i) A LiZ1d’ is bounded independently of h,
(iii) there exzsts an integer u, independent of h, such that f®)(t,t) exists,

of ) of W)
g (s, 1)=0 and ft (s, )20,
s

(iv) [6f“(s, t) ds exists and is independent of h. Then inequality (2.5) implies
inequality (2.6) where C is independent of h.

Note. The actual determination of the function f defined by inequality (2.9)
will be made clearer in Section 3, where an example is considered (Lemma 3.2).

Proof. By collecting terms in ¢; and taking moduli, inequality (2.5) gives us

l&]=C6+h 2 d§P |g, (2.11)

=

where C; is independent of . We now show by induction that ¢; satisfies
=1
lel=C, (q )5 +h 2 dP |- 2.12)
Clearly inequality (2.12) is satisfied for u =1, for then it reduces to inequality

(2.11). We now derive the inductive step. Assuming that inequality (2.12) holds,
we multiply through by Ad% and sum over i. This yields

-1 q" -1 = i—1
B3 aP e =Co(L=2)g+h S ha® S, afP e,
i=1 qg—1 i=1 j=1
Using inequality (2.11), we obtain

u+1 1 -1 i—1
les| =C 5(——1) +h D hdP D dP |g).
q i=1 j=1
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Reversing the order of summation yields

,u+1 = =1
1= Cd(L1) +h S (3 nawape

i=j+1

Interchanging the roles of the indexes ¢ and i, and noting that d{/, is positive, we

get
>+h2{ 2 hdPd <“>}|ej|.

=1 L€=j+1

p.+l

el s cio(—
q-

Using the definition of d{*) given in (2.8), we see that the induction is complete.
By using definition (2.9) in inequality (2.12), we obtain

& = C,0 (qq“——11> +h :zzf(“)(h(j +1), hi) |£]. (2.13)

We now modify (2.13) so that we may use the continuous Gronwall inequality of
Theorem 2.1. The derivation of discrete inequalities from their corresponding
continuous results is discussed in [6]. Following this, we set x(s)=|g| for
s €[t;, t;+1), with ¢; = jh. Noting that f,(s, £) =0, (2.13) gives us

x(t)_C1< 2 )6+2] F(s, t)x(s) ds,

so that

HEE (‘1;_%) 5+ JO " £, 1)x(s) ds.

By applying the result of Theorem 2.1, we obtain

el =x) S & (L2

_11) exp {Llif(“)(s, t;) ds} é.

Since g, p and [§f®)(s, t;) ds are all independent of h, we have the result that
&=0Co,

where C is independent of A.

3. Abel-type singularities

In this section we present and prove convergence of a numerical method for
singular equations of the form (1.2). To avoid the poor convergence results which
are obtained when applying product integration methods on uniform meshes
directly to equation (1.2), we introduce two transformations which regularise the
behaviour of the solution. This idea was discussed by Norbury [10] with regard to
a particular singular Volterra equation.

If we define

s =tsin® ¢, (3.1)

then equation (1.2) becomes

¥ =5+ [ 2Visin py(esin® 9) do.
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Setting
r= 3.2)
and defining u(6) =y(¢) and h(0) =g(¢), we obtain
/2
u(6)=h(0) + 20 sin pu(¢p*) do, (3:3)
0
where
¢* = 0 sin ¢. (3.4)

These two transformations have regularised the behaviour of the solution [9] and
hence we are in a position to apply standard product integration techniques to
solve equation (3.3). We divide the range of 6 by the equally spaced mesh points

0,=jh, j=1, ..., i with a mesh spacing of length 2. We then subdivide the range
of integration ¢ by the unequally spaced mesh points ¢;, j=1, ..., i defined by

Hence, from equation (3.3) we have

i bij
u(8,)=h(6;) + >, 26; sin pu(¢*) do. (3.6)

=1 i
By virtue of the non-uniform division of the range of integration, the unknown in
the integrand, u(¢*), takes on values u(6;) at the end of each range of
integration. We now introduce a trapezium rule approximation to equation (3.6);
defining u; to be our numerical approximation to the true solution u(6;), we

obtain

i h(B,) o i e 291 sin ¢ [(¢ii il ¢)uj—1 s (¢ = (Pij—l)uj]

do. 3.
J=1 =i (05— P5-1) ¢ 3.7

The coefficients of the ©;’s may be integrated explicitly to yield the expression

w;=h(60;) +26, >, aju;_; + bu,, (3.8)
j=1
where
Sin ¢," - Sin ¢,"__1
<o, —cosd;. ——( ! . ) (3.9)
! il ¢ij - ¢ij-1
and
0<b, = (Sm $; —sin ¢,-,-_1) — cos ¢y (3.10)
<I)ij = ¢ij—-l

THEOREM 3.1. The solution u; to the discrete equation (3.8) is convergent to the

solution u(6,) of the integral equation (3.8) with order hi™¢, ¢ an arbitrary positive
number.

The proof of this theorem requires a number of preliminary results which we
NOwW prove.

Lemma 3.1. With d;’s defined as in (3.21), h £iZ1d’ is bounded above
independently of h.
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Proof. Since 1 — hd,; is independent of A, to first order, it suffices to show that
e i=1
hY, dy=26; 3, (51— Pi-1)
j=1 j=1

is bounded above independently of A.
We define p(0, 6;) by

6+h 6—nh
p(6, 8,)= sin”* (T) —sin™?! (T)
Then from definition (3.5) we see that
i—1 i—=1
h Y, dy; =26, >, p(6;, ). (3.11)
j=1 j=1
Differentiation shows that p(6, 8;) is an increasing function of 6 for 6 e
[61, 6;_1), and hence that
i—2 1 6;—1
ZP(BJ: Bz)é_ p(e’ 9:) de.
j=1 h Jo,
On applying the Mean Value Theorem to p(6, 6;), we obtain
" —————————2 e =7
o [67—(0+h)

By applying this result to equation (3.11) and noting that hd;_, is O(h?), the
lemma follows.

i—2
EIP(BJ-, 6;) =
=

LemMa 3.2. The second iterated kernel d generates a function f®((j + 1)h, ih)

@ 5@
= (s, 1)=0and f (s, ) =0,

ot

Proof. From definitions (2.8), (3.5) and (3.21) we have for j=1,...,i—1,
where M is independent of A,

which satisfies the conditions that f@(t, t) exists,

i
@) — W 0 _407M
d;’=h egn diedY; §—h (2 (Pies1— Pie—1)(Pgis1— Per)-  (3.12)

—j+1

Consequently, we analyse the sum S, defined by

i=1
$ = E (ics1— ¢ié’—1)(¢€j+1 3 ¢€j—1)' (3.13)
£=j+1

Use of the Mean Value theorem shows that

S an?
S - —
51 (07 — A?)[6% - B}

where

(6,—h)<A<(6,+h)=06;
and

(6, —h)<B<(6;,+h)=6,.
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We now represent the summation as the sum of two Riemann sums for the purpose
of comparison with an integral. We obtain

s=san | i -
= o, 16— (0 + RYPI6*— 63,
Noting that for 6,,,=0=6, ,, [6?— (6 +h)*)| *=[62_, — 6°] %, we obtain
iy de
S=4h f .
6, [‘9:‘2—1 = 92]5[92 - 912+1]i

j+1

Substitution of 6,,,V = 6 yields
ﬂ £ cdcC
0._. )y (CP—VH(VZ-1)¥’

where C = 6,_,/6;,,. This integral is a complete elliptic integral of the second
kind (see [1], p. 596 and p. 590) and the result may be written (in the notation of

(1]) as

S

lIA

4h
S=
01

_ 4h
=
Thus, by (3.12), (3.13) and (3.14) we obtain

166?M
d,g?)ée—K(l —-1/C?), (3.15)

=1

F(m/2\cos™' (1/C))

K(1 —1/C?). (3.14)

where C =6, ,/6;,,. Thus dP =M. K(1 — 6%,,/6%_,) where M is independent of
h. Using the known properties of K (see the graph in [1], p. 592) we can finally
bound d by

dI(jZ) =M. K(l = 9;2+1/612)‘
Hence .
O, )=M. K1 - s 1E). (3.16)

Since K(0)=x/2 and K'(x)=0 [1], the three conditions of the lemma are
satisfied.

LemMA 3.3. The function f®(s, t) defined in (3.16) is integrable with respect to
s, over the range 0=s=t, and the result is bounded independently of h.
Throughout this lemma K is as defined in Lemma 3.2.

Proof. Define I by
I = J O, 1) ds.
0

Then, using definition (3.16) and making the substitution s = Vz, we obtain

1
I= M[ K(1—V3tdv.
0
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We can then show that [ satisfies

K(1 - V3»V2Vvav
[L-a-vayp

2o
I§Mtj
0

Setting y =1 — V? yields
Mt [t K(y) Mt
IS0 | —=5dy =—7K}(1/V2),
using [7, formula 6.143, p. 637]. Thus we have the desired result.
Lemma 3.4. The consistency error, ce;, satisfies
ce; =6 = Mshi—e.

Throughout this lemma Mg, K=1,...,5 denotes a number bounded above
independently of A.

Proof. The consistency error ce; is defined by
N : o [(@5 — Plu(¢;—1) + (¢ — ¢;-1)u(9))
lgl Pij—1 261 = (p I:u(d) ) { (¢ij = d)il'—l) }] d¢ '

By using the formula for the error in a Lagrange interpolating polynomial, we
obtain
¥ d*(u(¢™))
Gisintp === ———
1231 Pij—1 d¢2

Because of the smoothness of the solution u(6) of equation (3.3) (see [9]), we
may bound ce; above by

ce; =

ce—

X (¢ — ¢ii-1)(¢ — ¢;) do

¢*=n

i Pij
Z M (¢ — ¢ij—1)(¢ij — ¢)sin ¢ do '

J=1 i1

e, =
Maximising the quadratic term over (¢;_,, ¢;), we obtain
i
Ce,' é M2 2 (¢U e (;b,-i_])z(COS (pij—l ——COS ¢’J)
j=1

=M, >, G(6;, 6),
j=1

0; 0N
G(6;, 6,) = [sin“1 (51) —sin~! (#)]

02 .13 21}
aip=—s =12}

It can be shown that G,(6, 6,)=0 for 0€]0, ;] and so, by an integral
comparison theorem

where

M, (%
ce,é—h~2 - G(6, 6,)d6 + M,G(6,, 6;). (3.17)



Volterra integral equations — I 371
By defining x = 6/6; and y = (0 — h)/6; and applying the result that (4} — B}) <
(A — B)}, we obtain

6

7={ G, 6)de= f " (2 — y?)} [sin~}(x) — sin" ()] d6.

6,
In the following we use the Mean Value Theorem (twice) and the result that
(A—B)'**=(A'""*—B'*") for all ¢=0.
[sin™! (x) —sin™! (y)]* = [sin™! (x) —sin™" (y)]" " “[sin " (x) —sin~" (y)]'**
(X __y)l—e i - - €
ém [sm 1 (x) — Sin . (y)]1+

g(% [(sin™" (x))"** — (sin™ (7))***]

=1+ s)(—g)e(x — P — ),

The introduction of & >0 has made the term (1 —x*)"'*? integrable. Thus we
have

6,

i 0 fv2 2\ 2—¢
=y x—y)
G(6, 6; deéMf ;
( ) 3 o, (1_x2)1—e/2 de

6
which is X y
% (2x)*x —y)®
=M e )]
3 ‘Lx (1 _x2)1—s/2

On noting that (x —y) = h/6; we obtain
6;
G(6, 6,) d6 = M,h}c.
6,

On fioting that G(8;, 6;) is O(h?) we obtain, from inequality (3.17),

ce; = Mshi~, (3.18)
the desired result.

Proof of Theorem 3.1. Defining ¢; = (4; — u(6;)) to be the approximation error
at each mesh point, subtraction of equation (3.7) from equation (3.6) gives us

&=0+ D, 20,(a,e_, + bye;) (3.19)
=1

J
where 6 is an upper bound on the consistency error, defined in Lemma 3.4.
Defining e; by
€0 = 20,a,0,

ey =2800a;.y+bg), j=1,...,i—1
and
e; =26;(b;),
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inequality (3.19) may be written as
§E=06+ z e;E;.
j=0
Forj=1,...,i—1 it is possible to show, by use of the Mean Value Theorem,
that
€j = 29i(¢ij+1 ~ ¢ij—1)-

Assuming that g, =0, since the initial value is known, we may write

§&=0+h Y, dje, (3.20)
j=1
where
hd; =26:b;
and
hd,‘jz 26i(¢ij+1 - ¢ij—1)) for ] = 1, ekaly i—1. (321)

This is in the form of inequality (2.5) and hence we attempt to apply Theorem
2.2. Analysis of b; shows it to be O(h?) and thus condition (i) is satisfied for
sufficiently small 4. Lemmas 3.1, 3.2 and 3.3 show us, respectively, that
conditions (ii), (iii) and (iv) of Theorem 2.2 are satisfied. Hence we deduce from
(3.12) that

where c; is independent of h. By Lemma 3.4 we obtain the final result
&§=chte, (3.22)

where ¢, is also independent of A.

4. Conclusions

We have derived a set of conditions on discrete error equations which ensure
that the rate of convergence of a numerical method will be determined entirely by
the consistency error (and for more general higher order methods by the starting
values as well). We have shown, by use of a simple linear integral equation (1.2)
that these conditions are of practical value in proving convergence. The choice of
the simple form of equation (1.2) was made purely to clarify the analysis. The
numerical method and proof of convergence would apply equally well to
equations with more general kernels of the form

0 =gy [ KL

Furthermore, under suitable conditions on the behaviour of the kernel K, the
basic idea of the numerical method extends to equations of the general form, for

0<a<l, -
Y0 =50+ [ T2

We consider this type of equation in Part II of the paper, see [11].

(4.1)

ds. 4.2)
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Finally we note that we leave open the following two questions. Is the ¢ arising

in the O(hi™®) rate of convergence an indication that the method cannot attain
O(h?) convergence (it might be O(h? Ln h) for example), or is the € a product of
the analysis of the consistency error resulting, perhaps, from the repeated use of
the Mean Value Theorem in Lemma 3.4? What rate of convergence would follow
from higher order integration rules being used to approximate the transformed
equation (3.3)? In practice we recommend use of the trapezium rule because of
its simplicity and its stability properties (see Part II of this paper [11]).
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